Subalternative Algebras
نویسنده
چکیده
An algebra is called subalternative if the associator of any three linearly dependent elements is their linear combination. We prove that in characteristic 6 = 2; 3 any such algebra is Maltsev{admissible and can be identiied with a hyperplan in certain unital alternative algebra.
منابع مشابه
Derivations on dual triangular Banach algebras
Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...
متن کاملp-Analog of the Semigroup Fourier-Steiltjes Algebras
In this paper we define the $p$-analog of the restericted reperesentations and also the $p$-analog of the Fourier--Stieltjes algebras on the inverse semigroups . We improve some results about Herz algebras on Clifford semigroups. At the end of this paper we give the necessary and sufficient condition for amenability of these algebras on Clifford semigroups.
متن کاملNew Results on Ideals in $MV$-algebras
In the present paper, by considering the notion of ideals in $MV$-algebras, we study some kinds of ideals in $MV$-algebras and obtain some results on them. For example, we present definition of ultra ideal in $MV$-algebras, and we get some results on it. In fact, by definition of ultra ideals, we present new conditions to have prime ideals, positive implicative ideals and maximal ideals in $MV$...
متن کامل